
 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 1 of 1

Tools and Techniques for Software Productivity Improvement

Mr. C. P. Tantry Mr. Sujeet Gore

Assistant General Manager Assistant General Manager

System Integration Division
Tata Infotech Limited

Mumbai 400096
INDIA

1. Abstract

This paper on “Tools and Techniques for Software Productivity Improvement”
demonstrates the use of Tools and Techniques to achieve productivity
improvement during the project lifecycle.

The project, on which the paper is based, involved the migration of a large
proprietary mainframe-based legacy application to an open J2EE architecture
comprising industry standard products. The migration was achieved with little or
no knowledge of the application functionality.

The paper describes the methodology adopted and provides metrics on
improvement in productivity, achieved by continually improving tools and
techniques used in the project.

The paper also discusses the lessons learnt from the usage of tools and techniques.
The learning experience could be of use to those considering migration of legacy
application to new technologies.

It also details the points considered during estimation and describes how to factor
productivity improvements during the project. This helps in better resource
planning by having people allocated to the project based on the variation of effort
required during the project.

In conclusion, effective tool management plays a significant role in the execution
of such migration projects. Identification of opportunities for increasing the
automation level by enhancing tools should be planned in the project lifecycle.

2. Introduction

Legacy systems are typically large software systems that run on proprietary
platforms and contain the core business logic of an organization. CIOs are often
faced with the challenges of maintaining such systems in the face of changing
business needs. These challenges are compounded by the fact that these systems

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 2 of 2

are often written in obsolete languages. As time goes by, available tools and
resources (people, hardware, software and support) become scarce, the risks
become more acute, while the cost of migration increases exponentially.

Their sheer size and ingrained business knowledge prohibit re-development from
scratch. There have been a number of attempts to provide a solution to this
problem but to no avail. From this perspective, migration aids, which help
automate part of the transition effort, increasingly assume significance.

When source and target systems are based on similar programming frameworks,
for example: procedural or object-oriented, a tool suite that addresses all aspects
of migration can decrease the migration effort significantly when compared to
manual estimates. The use of tools also significantly reduces the risks associated
with timelines, cost and functionality replication.

2.1 The Customer

The customer was a renowned university in the USA, founded in 1909, and one of
the oldest and biggest institutions in the USA. It has 10 sister varsities spread
across the country. It has a total enrolment of more than 9,000 undergraduate and
graduate students.

The University migrated their existing Unisys legacy system, a mission critical
application used by more than 600 users, to a Web based client/server architecture
on an open platform, based on Intel chips, Windows operating systems, and
Oracle 9i relational database.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 3 of 3

2.2 Options

Before deciding to migrate to a new technology, the three options evaluated by
the university are mentioned in the table.

Options Upgrade Replace Migrate

Involves

Retain existing
environment and upgrade
to newer versions of
hardware and software.

PeopleSoft

(Recommended by a Big
5 consulting firm)

Move to
OPEN
architecture

(Rewrite/Mig-
rate decision)

Cost

Hardware/software
upgrade

~ $2 million

(Over 4 years)

Annual maintenance ~
$500K per year

New Hardware

~ $2 million

PeopleSoft
Implementation

~ $5 million
(Over 4 years)

New
Hardware

~ $2 million

Migration

~ $1 million
(Over 2 years)

Total Cost

(4 Years)
$4 Million $7 million $3 million

Timeframes 3-6 months staggered 2 years
Less than 1
year

Key Risks
Retaining proprietary
platform

Need for BPR to be in
line with PeopleSoft

Plus

Two failed past attempts

Performance
of the
migrated
system

The factors that prompted the University to go in for the Migrate option included

• Timeframe for expiry of the mainframe lease
• Benefit in retaining the mature business logic
• Comparative cost/timeframe/risk

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 4 of 4

• Coexistence of migrated COBOL and Java
• System maintenance is easier and minimal training is required

Additional benefits included

• Migrated application is web-enabled
• Operational cost saving
• Gradual rewrite of COBOL to Java is possible at a pace chosen by the

University.

2.3 Legacy Application

The University’s legacy application, written in COBOL 74 using the DMSII
database, was hosted on a Unisys ClearPath A-Series machine (Model 4601-21).
The machine had a dual processor with a memory of 144 MB (24 Mega Words).
The operating system was the MCP Release SSR 48.1. The application used a
customized ALGOL MCS controller program that handled transaction routing and
passing of messages between the user and the system, with more than 600 users
using the application.

The application had both online and batch COBOL programs. Message handling
was done by MCS and the batch COBOL programs were executed via WFLs
(Work Flow Languages).

Existing Architecture:

UserUser Screen Proprietary
MCS

Screen
Builder

COBOL
Program

DMS II
Database

The University had been using this application for more than 20 years. During this
period, the application was customized and enhanced continually.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 5 of 5

The table below gives an idea of the size of the application.

Type Number LOC
COBOL Programs 1,042 810,655
ALGOL Programs 23 16,292
Screens 615
WFLs 957 16,498
Database Tables 141
Database Indexes 380

2.4 Target Environment

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 6 of 6

Database Configuration

Database Cluster: (2) Compaq DL-580 rack mounted servers

Hardware: 3 Pentium III Xeon 900 MHz Processors

Software: Windows 2000 Advanced Server OS w/ Service Pack 3

 Oracle 9i database Enterprise Ed. Release 2 (9.2.0.1.0)
 Oracle 9i Rapid Application Cluster and Cluster Guard Release 3.3.1

Application Server Configuration

Hardware: 2 Pentium III Xeon 900 MHz Processors

Software: Windows 2000 Advanced Server OS w/ Service Pack 3

 Oracle 9i Application Server Release 2 (9.2)

User Interface

Microsoft Internet Explorer 5.5 or higher

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 7 of 7

3. Methodology

TRACK (Tata Infotech Reengineering and Conversion Kit) Methodology was
used for the University migration project. Using this methodology, the migration
project was accomplished through a series of well-defined phases, with each
phase achieving a clearly defined and measurable result towards the end goal.

Pre-Proposal
Study

CIP Packaging

CIP Set Up
Assessing

Applications

Reengineering
Planning

Reengineerng

Testing

Implementation

Acceptance

Post-
Acceptance

Support
TRACK Methodology

3.1 Phase I – Pre-proposal Study

In this phase, an assessment of the customer’s system is made with a view to
estimating the scope of work. It involves analyzing the genealogy of applications,
that is, environments used in the past, tools used, and methods used for any type
of migration as well as the people in the organization that support the application.

Tools Used: iTrack

3.2 Phase II – CIP Packaging

In this phase, the inventory of applications to be migrated is collected, based on
the scope of work. The Customer Input Package (CIP) is then formed with the
source code of applications, related documentation, copybooks, etc.

Tools Used : iTrack
 PacketCheck
 TokenSearch

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 8 of 8

3.3 Phase III – CIP Package Setup and Assessment of Applications

In this phase, the CIP package received from the customer is set up, the impacted
programs and their lines of code are identified using tools. A study of the existing
system design is made to find out if any additional modules need to be developed.

Tools Used : iTrack
 PacketCheck
 TokenSearch

3.4 Phase IV – Reengineering Planning

Based on the assessment, the strategy for migration is revalidated, and alternative
approaches with their advantages and limitations are analyzed in this phase. The
Reengineering Plan document, prepared in this stage, describes the assessment
observations, standards of migration, change control procedures, etc.

Tools Used : iTrack
 TokenSearch

3.5 Phase V – Reengineering

The Reengineering Plan Document forms the basis for executing the migration in
a planned manner. Activities like building of the architecture, code migration,
screen generation, database setup and data migration etc are done in this phase.

Tools Used : iTrack
 ASCOT
 HTMLGEN
 WFLCON
 IOGEN
 DATAGEN
 CodeWrap
 CobolChecker

3.6 Phase VI – Testing

In the Testing phase, test plans prepared are focused on replicating the
functionality and are executed in a formal, systematic manner.

Tools Used : iTrack
Rational Test Suite

3.7 Phase VII – Implementation

In the Implementation phase, the target environment is set up and the converted
application is installed. This involves setting up the database, runtime
environments, and various system parameters.

Tools Used : iTrack

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 9 of 9

3.8 Phase VIII – Acceptance

Using the Acceptance Test Plan, the customer tests the system in the Acceptance
phase. A parallel run of the old and new systems is done. At the end of successful
testing, the customer accepts the system and delivers an acceptance letter.

Tools Used : iTrack

3.9 Phase IX – Post Acceptance Support Phase

During this phase, system support is provided to resolve any problems that might
arise due to the migration.

Tools Used : iTrack

4. Tools and Techniques

4.1 Role of Tools and Techniques

Tools and Techniques play a pivotal role in automating the activities of a project,
and result in obvious advantages. The main advantage is the reduction in effort
required to complete a task. An activity, which would have taken much longer to
complete manually, is finished in a very short time with the aid of tools and
techniques. This leads to increased productivity, as shown in the graph in the
Section on Metrics.

Since automation requires fewer manual changes in a program, the risk of errors
cropping up due to manual changes reduces considerably. The quality of the
migration is improves, with hardly any errors found during testing.

Since the use of tools reduces the effort and timeframe for tasks within a project,
tool usage should be considered while estimating the project effort.

4.2 Management of Tools and Techniques

It is imperative that tasks during a project lifecycle are continually monitored for
repetitiveness. Repetitive tasks need to be identified and attempts be made to
automate them. Thus, projects should plan for enhancing tools.

A project could begin with a requirement to automate certain tasks. Based on
whether the baseline version of the tool caters to every aspect of the project need,
certain tools may require customisation or enhancement to cater to specific
requirements. During the course of the project, more activities may be identified
for automation; hence, tools must be enhanced continually to meet these needs.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 10 of 10

Enhancing a tool, however, can present a few issues like rerunning the tool on
programs that have already been converted manually. If a certain additional
change is identified midway during a project, the tool may be enhanced to cater to
it. The enhanced tool will work well for programs yet to be converted, but for
programs that have already been migrated, one needs to be careful in using the
enhanced version of the tool.

Such, and other, issues usually crop up during a project and need to be aptly
handled. Depending on the specific case, it may be prudent to create a separate,
small utility for the additional need instead of enhancing the main tool. This way
separate execution is possible. Tools can have the facility of selectively migrating
the different syntax present in the source code.

Management of tools, thus, should constitute an integral part of the learnings
during a project life cycle. Milestones should be set in the project plan, where
learnings are collected and analyzed to evaluate possible enhancement of tools.

4.3 Third Party v/s In-house Tools

Management often has to decide on a Build v/s Buy option for tools. No one tool,
whether developed in-house or third party can meet all the needs of such
Migration projects.

During the course of the project, learnings identify repetitive tasks that can be
automated. In contrast to third party tools, in-house tools can be enhanced and
customized to meet the specific needs of the project. In-house developed tools do
not need to consider issues like licensing, cost, vendor dependence for support
etc.

On the other hand, third party tools are readily available and save the effort
required to build the tool.

The pros and cons of both need to be carefully evaluated before finalizing on the
tools suite used for the migration.

Projects therefore need to use a combination of third party and in-house tools.

4.4 Testing Techniques

The execution of a migration project does not follow the same methodology as a
normal development project. In a standard development project, test cases are
developed based on the understanding of the application’s functionality. In
contrast, a migration project does not require the understanding of the complete
functionality of the application. Thus, there is a heavy dependency on the client in
preparing the test cases.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 11 of 11

The emphasis on testing in a migration project is to ensure that the functionality is
retained during migration. Test cases are developed by running through the
business transactions on the source environment and capturing the results. After
the migration, the transactions are executed in the target environment, and the
results are compared and matched. This is Replication testing.

Tools provide a clear advantage during the testing phase of a migration project.
Once the migration of a particular syntax is automated and thoroughly tested on
the sample code, one needs to worry less about using it across all occurrences of
the same syntax in the entire source code. Hence, there are substantial savings in
the testing effort with this approach.

4.5 Tool Suite

The table lists some of the important tools used during the Migration of the
University’s mission-critical applications.

Tool Description

iTrack Project management tool used to assist in tracking of various
types of items such as defects, issues etc.

TOKENSEARCH A tool used for impact analysis.

PacketCheck A tool used for inventory analysis.

HTMLGEN A tool to convert character-based screens to HTML screens.

DATAGEN A tool to migrate data from a proprietary database to a
relational database.

ASCOT A code generator to handle platform related changes.

IOGEN A tool to generate Open Database access routines (relational
database).

CobolChecker A tool to review code migration.

CodeWrap Tool to convert a COBOL program to Object COBOL
program for J2EE environment.

WFLCON A tool to convert proprietary job control/workflow programs
to BAT files.

Rational Test Suite A tool for performance testing.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 12 of 12

iTrack

Area: Project Management

iTrack is an item monitoring and tracking tool for tracking various items such as
defects, queries, issues, etc. It enables a project workflow to be established. Data
maintained in the iTrack system helps in the collection of metrics. Based on this,
at various predefined review checkpoints in the project schedule, steps can be
taken to reduce risks and to improve processes.

The system, thus, provides full item traceability that improves productivity and
reduces the time spent on obtaining clarifications, etc. Weekly trends for item
types such as queries, issues and defects can be monitored, allowing for initiating
action if outstanding items go beyond the project defined control limits.

TOKENSEARCH

Area: Impact Analysis

TOKENSEARCH is used to find occurrences of various tokens across the
inventory. The tool is especially useful in the analysis phase when the inventory is
scanned for complexity. It helps in determining the extent of changes and aids in
effort estimation of the migration.

The tool also gives the occurrence and the count of token specified, which helps
in deciding the types of enhancements required on the tool.

Packetcheck

Area: Inventory Analysis

Packetcheck scans the complete inventory and reports the count of various
components of the inventory, like types of programs (source, copybooks, etc.),
language of programs (COBOL74, COBOL85, and ALGOL), missing inventory
entities (missing sources and copybooks). It generates a comprehensive report
detailing the counts and Lines of Code (LOC) of all types of components
identified.

By aiding in analyzing the inventory and determining its complexity, the
Packetcheck tool helps in effort estimation.

HTMLGEN

Area: Screen Migration

HTMLGEN is used to convert character-based screens to HTML screens. The
tool reads the character screens and interprets the control characters used to build
the screen. It also assigns attributes to a field such as Read-Only, Justify, etc.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 13 of 13

Based on these characters, the tool builds HTML screens with the same layout
and screen/field attributes.

DATAGEN

Area: Database and Data Migration

Migration involves extracting data from a proprietary database. For the Migration
project, data was migrated from the Unisys mainframe (DMSII database) and
loaded into the Oracle database. The legacy application had around 140 tables and
380 indexes. In addition, more indexes, views and sequences were created in
accordance with the database migration strategy.

It was a formidable task and required a lot of effort if it were done manually. The
manual effort would have increased the risk of incorrect schema and data
migration that would have been difficult to identify.

This issue was overcome by using DATAGEN to generate the database schema. It
created the complete schema by converting the proprietary schema into an Oracle
database compatible schema, and by generating additional entities for the
migration strategy.

The tool also dumped data from each table into a tab separated flat file so that it
could easily be loaded into an Oracle database. For large tables, it dumped the
table into multiple smaller files so that the ftp of the data files could be done faster
and in parallel; this reduced the elapsed time for data migration.

Following adequate testing of the tool on a few representative tables, data
migration of the remaining tables was completed within a short span without any
errors.

ASCOT

Area: COBOL Code Migration

Migration of the COBOL code from Unisys COBOL to MFCOBOL constituted
the bulk of the project activity. The application had around 1 million lines of
COBOL code. Since the complete logic for the business processes was inside
COBOL programs, it was essential that the COBOL code be migrated with
minimal errors and be tested thoroughly. Manual migration of the code would
have resulted in a longer timeframe and more migration errors.

The COBOL code migration was a repetitive task for which rules and strategies
were documented. ASCOT was used to automate these standard code migrations.
Use of ASCOT ensured that the errors related to incorrect migration were reduced
to a minimal. Automation also meant that the timeline required to convert a
program was reduced and the available time was used to test the complex
business logic.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 14 of 14

IOGEN

Area: Generating Database Access Routines

Owing to the change in the database environment, from hierarchical to relational,
the proprietary database access logic had to be converted to work with relational
databases. Yet, the challenge was to ensure that the application received the data
in a manner similar to the old environment so that the core business logic was not
affected.

In accordance with the migration strategy, database routines were extracted into a
separate copybook to increase modularity and reuse. The analysis of the
application revealed that there were around 1500 such different variances of
database access across the complete set of tables.

IOGEN was used to generate database routines from the tables in the database. It
used a template to generate routines for all standard syntax of database access.

CobolChecker

Area: Code Migration

This tool scanned the complete program, and based on the standards identified for
code migration, flagged off lines in which incorrect code migration was done or
set standards were not followed.

CodeWrap

Area: Code Migration

The migration methodology involved COBOL programs to be wrapped into
object COBOL using the wrapper wizard provided by MicroFocus IDE
(Integrated Development Environment). Although the wrapping of individual
programs took about couple of minutes, looking at the inventory size and the
number of iterations each program needed, wrapping would have been a
significant effort in person months without the tool. The tool drastically reduced
the cumulative effort required for wrapping as well as eliminating the element of
human error.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 15 of 15

4.6 Metrics

Metrics Used for Migration Projects

Metric Formula

Automation level
LOC changed by a tool
Total LOC changed

Rate of migration
LOC migrated
 Day

Screen migration Rate
Number of screens migrated
 Day

Improving Metrics With the Use of Tools

Metrics At
Start

Stage 1 Stage 2 Stage 3

Automation Level 60% 73% 78% 81%
Rate of migration 700 900 975 1025
Screen migration rate 0.5 0.67 0.80 0.90

60%

73%
78%

81%700

900
975

1025

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

A t S ta rt 1s t S tage 2nd S tage 3 rd S ta ge
0

200

400

600

800

1000

1200

A u tom ation L evel
M igration R ate

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 16 of 16

0.50

0.67

0.80
0.85

0.40

0.50

0.60

0.70

0.80

0.90

1.00

At Start 1st Stage 2nd Stage 3rd Stage

Note: The plotting in the graphs represents typical improvements.

5. Challenges

No doubt, tools and techniques ease and speed up the migration effort, but the
migration process has its share of challenges. Some of these challenges are:

Data Migration: During data migration, tools have to take into account the native
collating sequence of the source and target machines. Migration of signed
computational fields from EBCDIC to ASCII is a difficult task because of the
difference of encoding in these two collating sequences.

Schema Migration: In migration projects, most of the programs are not rewritten
but are only migrated to be compatible with the target environment. The database
layout in terms of the schema cannot be altered without corresponding
modifications to the programs. Hence, it is recommended that the database
schema on the target platform be not normalized. If done, considerable effort will
be spent in distinguishing migration errors from that due to database
normalization.

Screen Generation: While automating screen generation provides saving in
terms of effort, dynamic screens provide a challenge to automation. Since the
layout of these screens depends upon the data at runtime, they cannot be built
using a tool.

 Tools and Techniques for Software Productivity Improvement

AP-SEPG Conference 2003 Page 17 of 17

Code Migration: A cost benefit analysis of the task to be automated needs to be
done to decide whether it is worth automating it. Some of the syntax on the source
platform does not have an equivalent on the target platform. In such cases,
workarounds need to be arrived at to come up with the best possible solution to
migrate the source code.

6. Inferences and Conclusions

The use of such Tools and Techniques reduces the amount of tedious and error-
prone manual changes for a migration project.

As the automation levels of tools increase during the course of the project,
productivity too increases. This increase in productivity should be accounted for
in the effort estimation of subsequent modules. This would result in decreased
timelines and help in planning future resources requirements.

The estimation model too should consider the increased productivity due to tools.
This will help in arriving at a more realistic effort and timelines for projects.

Effective tool management plays a significant role in the execution of such
migration projects. Identification of opportunities for increasing the automation
level by enhancing tools should be planned in the project lifecycle.

Bibliography:

1. Bennett, K., "Legacy Systems: Coping with Success", IEEE Software, 12(1), pp. 19-
23, January 1994.

2. L. A. Belady & M. M. Lehman., "A model of large program development", IBM
Systems Journal, 15:225-252, 1976.

3. Ruhl, M., and M. Gunn (1991), "Software Reengineering: A Case Study and Lessons
Learned," NIST Special Publication 500-193, Washington, DC, September 1991.

4. Jacob S. Dhinakar and Dr. Madhuchhanda Das, '"Automated Migration : A Phase of
Re-Engineering", International Workshop on Program Comprehension (IWPC), 2003.

5.Bergey, John; O'Brien, Liam; Smith, Dennis. An Application of an Iterative Approach
to DoD Software Migration Planning (CMU/SEI-2002-TN-027).

6. O'Brien, Liam; Smith, Dennis. MAP and OAR Methods: Techniques for Developing
Core Assets for Software Product Lines from Existing Assets

Note : In preparation of this paper, Tata Infotech acknowledges all trademarks and
copyrights of the respective parties.

